Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(12): 3478-3489, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37919902

RESUMO

Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.


Assuntos
Distrofias Musculares , Pentosiltransferases , Animais , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Pentosiltransferases/uso terapêutico , Ribitol/metabolismo , Ribitol/uso terapêutico , Dependovirus/genética , Dependovirus/metabolismo , Distroglicanas/metabolismo , Distrofias Musculares/tratamento farmacológico , Terapia Genética/métodos , Mutação , Músculo Esquelético/metabolismo
2.
PLoS One ; 17(12): e0278711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477459

RESUMO

Breast cancer is heterogenous in development and cell population with prognoses being highly dependent on numerous factors from driving mutations, biomarker expression and variation in extracellular environment, all affecting response to therapies. Recently, much attention has been given to the role of metabolic alteration in cancers, expanding from the Warburg effect to highlight unique patterns in different cancer cell populations for improving diagnostic and therapeutic approaches. We recently reported on modulation of mannosylation of α-dystroglycan with the metabolite ribitol in breast cancer lines. Here we investigate the effects of pentose sugars ribitol, ribose, and xylitol media supplementation in breast cancer cells by metabolomics and differential gene expression profiling. This combined approach revealed distinctive patterns of alterations in metabolic pathways by ribitol, contrasted with the closely related pentose ribose and pentitol xylitol. Significantly, ribitol supplementation enhances utilization of glucose by glycolysis, whereas ribose improves oxidative phosphorylation and fatty acid synthesis. Ribitol supplementation also increased levels of reduced glutathione (associated with a decrease in oxidative phosphorylation, gluconeogenesis), where ribose supplementation elevated levels of oxidized glutathione (GSSG) indicating an increase in oxidative stress. Treatment with ribitol also enhanced nucleotide biosynthesis. The apparent TCA cycle dysregulation, with distinctive pattern in response to the individual pentitol and pentose, such as ribitol increasing succinate and fumarate while decreasing citrate, demonstrate the adaptive capability of cancer cells to nutritional environment. This metabolic reprogramming presents new avenues for developing targeted therapies to cancers with metabolites, especially in combination with other drug treatments.


Assuntos
Neoplasias , Ribitol , Carbono , Ribose , Redes e Vias Metabólicas , Perfilação da Expressão Gênica
3.
PLoS One ; 17(12): e0278482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454905

RESUMO

Limb Girdle Muscular Dystrophy 2I (LGMDR9) is one of the most common LGMD characterized by defects in glycosylation of α-dystroglycan (matriglycan) resulting from mutations of Fukutin-related protein (FKRP). There is no effective therapy currently available. We recently demonstrated that ribitol supplement increases levels of matriglycan in cells in vitro and in FKRP-P448L (P448L) mutant mouse model through drinking water administration. To be clinically relevant, we have now conducted a dose-escalating efficacy study by gavage in P448L mutant mice. Six months of ribitol treatment daily significantly rescued functions of skeletal, respiratory, and cardiac muscles dose-dependently. This was associated with a dose dependent increase in matriglycan and improvement in muscle pathology with reductions in muscle degeneration, inflammatory infiltration and fibrosis. Importantly, ribitol significantly increased life span and muscle functions of the female animals receiving treatment from 10 months of age. The only observed side effect was gastrointestinal tract bloating with loose stool and this effect is also dose dependent. The results validate the mechanism that ribitol as a pre-substrate of glycosyltransferase is able to compensate for the decreased function of mutant FKRP with restoration of matriglycan expression and provide a guidance for future clinical trial design.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Fenômenos Fisiológicos Musculoesqueléticos , Feminino , Camundongos , Animais , Ribitol , Longevidade , Modelos Animais de Doenças , Músculos , Pentosiltransferases/genética
4.
J Neuromuscul Dis ; 8(s2): S369-S381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569970

RESUMO

BACKGROUND: Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is currently used in clinical development to treat Duchenne muscular dystrophy (DMD), with four exon-skipping drugs achieving regulatory approval. Exon skipping elicits a truncated, but semi-functional dystrophin protein, similar to the truncated dystrophin expressed in patients with Becker Muscular dystrophy (BMD) where the disease phenotype is less severe than DMD. Despite promising results in both dystrophic animal models and DMD boys, restoration of dystrophin by exon skipping is highly variable, leading to contradictory functional outcomes in clinical trials. OBJECTIVE: To develop optimal PMO dosing protocols that result in increased dystrophin and improved outcome measures in preclinical models of DMD. METHODS: Tested effectiveness of multiple chronic, high dose PMO regimens using biochemical, histological, molecular, and imaging techniques in mdx mice. RESULTS: A chronic, monthly regimen of high dose PMO increased dystrophin rescue in mdx mice and improved specific force in the extensor digitorum longus (EDL) muscle. However, monthly high dose PMO administration still results in variable dystrophin expression localized throughout various muscles. CONCLUSIONS: High dose monthly PMO administration restores dystrophin expression and increases muscle force; however, the variability of dystrophin expression at both the inter-and intramuscular level remains. Additional strategies to optimize PMO uptake including increased dosing frequencies or combination treatments with other yet-to-be-defined therapies may be necessary to achieve uniform dystrophin restoration and increases in muscle function.


Assuntos
Distrofina/efeitos dos fármacos , Morfolinos/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Modelos Animais de Doenças , Éxons , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos mdx
5.
Cell Rep ; 36(2): 109360, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260922

RESUMO

Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Distroglicanas/genética , Terapia Genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Pentosiltransferases/genética , Animais , Pré-Escolar , Distroglicanas/metabolismo , Glicosilação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Mutantes , Fibras Musculares Esqueléticas/metabolismo , Mutação/genética , Fenótipo , Transplante Autólogo , Síndrome de Walker-Warburg/genética
6.
J Neuromuscul Dis ; 8(s2): S359-S367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151854

RESUMO

This review recollects my initial research focus on revertant fibers (expressing dystrophin in the background of frame-shifting mutation) in Duchenne muscular dystrophy (DMD) muscles in Professor Terrence Partridge's Muscle Cell Biology Laboratory in MRC Clinical Research Science Center, Harmmersmith Hospital, London, UK. Our data indicated that revertant fibers are most likely resulted from epigenetic random events which skip exon(s) flanking the mutated exon, leading to the restoration of the reading frame. Some of these events establish themselves as relatively permanent skipping patterns, a mechanism similar to multiple transcript species established in various cell types. With this hypothesis, antisense oligonucleotide-mediated exon skipping is likely to have a great chance to achieve restoration of therapeutic levels of dystrophin in DMD muscles. This leads to our first reports of local and systemic efficacy of antisense oligonucleotide-mediated exon skipping for DMD treatment. The experience under Terry's mentorship shaped my thinking and led me to explore another revertant feature in the dystroglycanopathy caused by mutations in the Fukutin Related Protein (FKRP) gene which functions as a glycosyltransferase. Mutant FKRPs retain partial function and produce a fraction of normal to no detectable levels of laminin-binding α-dystroglycan (matriglycan) in most of the muscle fibers. Reversion to near normal levels of matriglycan expression in muscles with FKRP mutations depends on muscle regeneration and in muscles of neonate mice, suggesting that changes in metabolism and gene expression could be sufficient to compensate for the reduced function of mutant FKRP genes even those associated with severe congenital muscular dystrophy (CMD). This is now supported by our successful demonstration that supply of FKRP mutant mice with ribitol, a precursor for substrate of FKRP, is sufficient to restore the levels of matriglycan with therapeutic significance. Our data overall suggest that rare events of reversion in muscular dystrophy, and likely other diseases could provide unique insight for mechanisms and therapeutic exploitation.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/terapia , Animais , Éxons , Terapia Genética/métodos , Humanos , Camundongos , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Pentosiltransferases
7.
Skelet Muscle ; 10(1): 10, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321586

RESUMO

BACKGROUND: Defects in α-dystroglycan (DG) glycosylation characterize a group of muscular dystrophies known as dystroglycanopathies. One of the key effectors in the α-DG glycosylation pathway is the glycosyltransferase fukutin-related protein (FKRP). Mutations in FKRP lead to a large spectrum of muscular dystrophies, including limb girdle muscular dystrophy 2I (LGMD2I). It remains unknown whether stem cell transplantation can promote muscle regeneration and ameliorate the muscle wasting phenotype associated with FKRP mutations. RESULTS: Here we transplanted murine and human pluripotent stem cell-derived myogenic progenitors into a novel immunodeficient FKRP-mutant mouse model by intra-muscular injection. Upon both mouse and human cell transplantation, we observe the presence of donor-derived myofibers even in absence of pre-injury, and the rescue of α-DG functional glycosylation, as shown by IIH6 immunoreactivity. The presence of donor-derived cells expressing Pax7 under the basal lamina is indicative of satellite cell engraftment, and therefore, long-term repopulation potential. Functional assays performed in the mouse-to-mouse cohort revealed enhanced specific force in transplanted muscles compared to PBS-injected controls. CONCLUSIONS: Altogether, our data demonstrate for the first time the suitability of a cell-based therapeutic approach to improve the muscle phenotype of dystrophic FKRP-mutant mice.


Assuntos
Terapia Genética/métodos , Fibras Musculares Esqueléticas/citologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Pentosiltransferases/genética , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Células Cultivadas , Distroglicanas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Pentosiltransferases/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
8.
Mol Ther Methods Clin Dev ; 17: 271-280, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31988979

RESUMO

Dystroglycanopathy, a subgroup of muscular dystrophies, is characterized by hypoglycosylation of α-dystroglycan (α-DG), which reduces its laminin-binding activity to extracellular matrix proteins, causing progressive loss of muscle integrity and function. Mutations in the fukutin-related protein (FKRP) gene are the most common causes of dystroglycanopathy. FKRP transfers ribitol-5-phosphate to the O-mannosyl glycan on α-DG from substrate cytidine diphosphate (CDP)-ribitol, which is synthesized by isoprenoid synthase domain-containing protein (ISPD). We previously reported that oral administration of ribitol restores therapeutic levels of functional glycosylation of α-DG (F-α-DG) in a FKRP mutant mouse model. Here we examine the contribution of adeno-associated virus (AAV)-mediated overexpression of ISPD to the levels of CDP-ribitol and F-α-DG with and without ribitol supplementation in the disease model. ISPD overexpression alone and in combination with ribitol improves dystrophic phenotype. Furthermore, the combined approach of ribitol and ISPD acts synergistically, increasing F-α-DG up to 40% of normal levels in cardiac muscle and more than 20% in limb and diaphragm. The results suggest that low levels of substrate limit production of CDP-ribitol, and endogenous ISPD also becomes a limiting factor in the presence of a supraphysiological concentration of ribitol. Our data support further investigation of the regulatory pathway for enhancing efficacy of ribitol supplement to FKRP-related dystroglycanopathy.

9.
Sci Rep ; 9(1): 10070, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296900

RESUMO

Muscular dystrophy-dystroglycanopathies comprise a heterogeneous and complex group of disorders caused by loss-of-function mutations in a multitude of genes that disrupt the glycobiology of α-dystroglycan, thereby affecting its ability to function as a receptor for extracellular matrix proteins. Of the various genes involved, FKRP codes for a protein that plays a critical role in the maturation of a novel glycan found only on α-dystroglycan. Yet despite knowing the genetic cause of FKRP-related dystroglycanopathies, the molecular pathogenesis of disease and metabolic response to therapeutic intervention has not been fully elucidated. To address these challenges, we utilized mass spectrometry-based metabolomics to generate comprehensive metabolite profiles of skeletal muscle across diseased, treated, and normal states. Notably, FKRP-deficient mice elicit diverse metabolic abnormalities in biomarkers of extracellular matrix remodeling and/or aging, pentoses/pentitols, glycolytic intermediates, and lipid metabolism. More importantly, the restoration of FKRP protein activity following AAV-mediated gene therapy induced a substantial correction of these metabolic impairments. While interconnections of the affected molecular mechanisms remain unclear, our datasets support the notion that global metabolic profiling can be valuable for determining the involvement of previously unsuspected regulatory or pathological pathways as well as identifying potential targets for drug discovery and diagnostics.


Assuntos
Distroglicanas/metabolismo , Metabolômica/métodos , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Distrofia Muscular Animal/metabolismo , Pentosiltransferases/metabolismo , Animais , Terapia Genética , Glicosilação , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distrofias Musculares/genética , Distrofias Musculares/terapia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Mutação/genética , Pentosiltransferases/genética
10.
Mol Ther Methods Clin Dev ; 11: 106-120, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30417025

RESUMO

Muscular dystrophy-dystroglycanopathies (MDDGs) resulting from fukutin-related protein (FKRP) gene mutations are rare disorders that result in a wide spectrum of clinical severity based on the age of onset, the degree of myogenic atrophy, and/or neurologic involvement. There is no cure for any of the FKRP-related disorders, and few options are available for symptom management. Herein, we examine the longitudinal effects of a dose-escalation study to evaluate the safety and therapeutic potential of FKRP gene-replacement therapy in a p.P448L (FKRPP448L) mouse model of MDDG. A recombinant adeno-associated virus (AAV) serotype 9 vector expressing human FKRP (AAV9-FKRP) was systemically administered to FKRPP448L mice at 5 weeks of age, when early onset of the disease is evidenced. A comprehensive analysis of protein and gene expression, histopathology, skeletal muscle function, and cardiorespiratory function was performed over short (9-week) and/or long-term (52-week) study periods. Additional studies assessed the impact of FKRP gene-replacement therapy on lifespan at an advanced stage of disease progression. Results indicate that treatment intervention can restore the biochemical defects in a dose-dependent manner, with potential for improvement in the trajectory of disease progression and extension of the expected lifespan. This study supports the initiation of early-stage clinical trials for FKRP-related disorders.

11.
Methods Mol Biol ; 1828: 231-247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30171545

RESUMO

Dystrophin exon skipping in mdx mice has been the key model for the development of antisense therapy in vivo. Evaluation of exon skipping in this model involves the following two aspects: (1) efficiency and accuracy of exon skipping and levels of dystrophin expression determined by RT-PCR, immunochemistry, and western blotting; (2) therapeutic effects on muscle pathology and functions assessed by histology and functional assays including grip strength measurement, treadmill test, echocardiogram, and hemodynamics for cardiac functions. Here we describe some key considerations and the essential methodologies in detail for exon skipping in mdx mice.


Assuntos
Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Splicing de RNA , Animais , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Hemodinâmica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos mdx , Força Muscular , Músculos/metabolismo , Músculos/patologia , Músculos/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Necrose/patologia , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
12.
Nat Commun ; 9(1): 3448, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150693

RESUMO

O-mannosylated α-dystroglycan (α-DG) serves as receptors for cell-cell and cell-extracellular matrix adhesion and signaling. Hypoglycosylation of α-DG is involved in cancer progression and underlies dystroglycanopathy with aberrant neuronal development. Here we report that ribitol, a pentose alcohol with previously unknown function in mammalian cells, partially restores functional O-mannosylation of α-DG (F-α-DG) in the dystroglycanopathy model containing a P448L mutation in fukutin-related protein (FKRP) gene, which is clinically associated with severe congenital muscular dystrophy. Oral administration of ribitol increases levels of ribitol-5-phosphate and CDP-ribitol and restores therapeutic levels of F-α-DG in skeletal and cardiac muscles. Furthermore, ribitol, given before and after the onset of disease phenotype, reduces skeletal muscle pathology, significantly decreases cardiac fibrosis and improves skeletal and respiratory functions in the FKRP mutant mice. Ribitol treatment presents a new class, low risk, and easy to administer experimental therapy to restore F-α-DG in FKRP-related muscular dystrophy.


Assuntos
Distroglicanas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/metabolismo , Proteínas/metabolismo , Ribitol/uso terapêutico , Administração Oral , Animais , Western Blotting , Linhagem Celular , Feminino , Glicosilação/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Miocárdio/metabolismo , Pentosefosfatos/metabolismo , Pentosiltransferases , Pletismografia , Proteínas/genética , Transferases
13.
Skelet Muscle ; 8(1): 13, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625576

RESUMO

BACKGROUND: Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. METHODS: We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. RESULTS: P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p < 0.05) and worsened with exercise. Plethysmography showed significant differences in respiratory rates and decreased tidal and minute volumes in P448Lneo- mice (p < 0.01). There was increased fibrosis in the diaphragm compared to controls (p < 0.01). Echocardiography demonstrated decreased systolic function in 9-month-old mutant mice (p < 0.01). There was increased myocardial wall thickness and mass (p < 0.001) with increased fibrosis in 9-month-old P448Lneo- mice compared to controls (p < 0.05). mRNA expression for natriuretic peptide type A (Nppa) was significantly increased in P448Lneo- mice compared to controls at 6 months (p < 0.05) and for natriuretic peptide type B (Nppb) at 6 and 9 months of age (p < 0.05). CONCLUSIONS: FKRP-deficient P448Lneo- mice demonstrate significant deficits in cardiac and respiratory functions compared to control mice, and this is associated with increased inflammation and fibrosis. This study provides new functional outcome measures for preclinical trials of FKRP-related muscular dystrophies.


Assuntos
Coração/fisiopatologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Proteínas/fisiologia , Animais , Peso Corporal/fisiologia , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Força da Mão/fisiologia , Masculino , Camundongos Mutantes , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Miocárdio/patologia , Miosite/genética , Miosite/patologia , Miosite/fisiopatologia , Tamanho do Órgão/fisiologia , Pentosiltransferases , Condicionamento Físico Animal , Pletismografia Total/métodos , Proteínas/genética , Músculos Respiratórios/patologia , Músculos Respiratórios/fisiopatologia , Transferases
14.
PLoS One ; 13(1): e0191016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29320543

RESUMO

The glycosylation of alpha-dystroglycan (α-DG) is crucial in maintaining muscle cell membrane integrity. Dystroglycanopathies are identified by the loss of this glycosylation leading to a breakdown of muscle cell membrane integrity and eventual degeneration. However, a small portion of fibers expressing functionally glycosylated α-DG (F-α-DG) (revertant fibers, RF) have been identified. These fibers are generally small in size, centrally nucleated and linked to regenerating fibers. Examination of different muscles have shown various levels of RFs but it is unclear the extent of which they are present. Here we do a body-wide examination of muscles from the FKRP-P448L mutant mouse for the prevalence of RFs. We have identified great variation in the distribution of RF in different muscles and tissues. Triceps shows a large increase in RFs and together with centrally nucleated fibers whereas the pectoralis shows a reduction in revertant but increase in centrally nucleated fibers from 6 weeks to 6 months of age. We have also identified that the sciatic nerve with near normal levels of F-α-DG in the P448Lneo- mouse with reduced levels in the P448Lneo+ and absent in LARGEmyd. The salivary gland of LARGEmyd mice expresses high levels of F-α-DG. Interestingly the same glands in the P448Lneo-and to a lesser degree in P448Lneo+ also maintain considerable amount of F-α-DG, indicating the non-proliferating epithelial cells have a molecular setting permitting glycosylation.


Assuntos
Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Mutação , N-Acetilglucosaminiltransferases/fisiologia , Nervos Periféricos/metabolismo , Proteínas/fisiologia , Glândulas Salivares/metabolismo , Animais , Modelos Animais de Doenças , Distroglicanas/genética , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Pentosiltransferases , Nervos Periféricos/patologia , Regeneração/fisiologia , Glândulas Salivares/patologia , Transferases
15.
Mol Ther Methods Clin Dev ; 5: 31-42, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28480302

RESUMO

Loss-of-function mutations in the Fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) and other forms of congenital muscular dystrophy-dystroglycanopathy that are associated with glycosylation defects in the α-dystroglycan (α-DG) protein. Systemic administration of a single dose of recombinant adeno-associated virus serotype 9 (AAV9) vector expressing human FKRP to a mouse model of LGMD2I at various stages of disease progression was evaluated. The results demonstrate rescue of functional glycosylation of α-DG and muscle function, along with improvements in muscle structure at all disease stages versus age-matched untreated cohorts. Nevertheless, mice treated in the latter stages of disease progression revealed a decrease in beneficial effects of the treatment. The results provide a proof of concept for future clinical trials in patients with FKRP-related muscular dystrophy and demonstrate that AAV-mediated gene therapy can potentially benefit patients at all stages of disease progression, but earlier intervention would be highly preferred.

16.
PLoS One ; 11(10): e0164187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711214

RESUMO

Mutations in the gene for fukutin-related protein represent a subset of muscular dystrophies known as dystroglycanopathies characterized by loss of functionally-glycosylated-alpha-dystroglycan and a wide range of dystrophic phenotypes. Mice generated by our lab containing the P448L mutation in the fukutin-related protein gene demonstrate the dystrophic phenotype similar to that of LGMD2I. Here we examined the morphology of the heart and diaphragm, focusing on pathology of diaphragm and cardiac function of the mutant mice for up to 12 months. Both diaphragm and heart lack clear expression of functionally-glycosylated-alpha-dystroglycan throughout the observed period. The diaphragm undergoes progressive deterioration in histology with increasing amount of centranucleation and inflammation. Large areas of mononuclear cell infiltration and fibrosis of up to 60% of tissue area were detected as early as 6 months of age. Despite a less severe morphology with only patches of mononuclear cell infiltration and fibrosis of ~5% by 12 months of age in the heart, cardiac function is clearly affected. High frequency ultrasound reveals a smaller heart size up to 10 months of age. There are significant increases in myocardial thickness and decrease in cardiac output through 12 months. Dysfunction in the heart represents a key marker for evaluating experimental therapies aimed at cardiac muscle.


Assuntos
Diafragma/patologia , Progressão da Doença , Coração/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Mutação , Proteínas/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Distroglicanas/metabolismo , Eletrocardiografia , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Miocárdio/metabolismo , Pentosiltransferases , Fenótipo , Transferases
17.
Am J Pathol ; 186(6): 1635-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27109613

RESUMO

Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy.


Assuntos
Corticosteroides/farmacologia , Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/patologia , Prednisona/farmacologia , Animais , Western Blotting , Densidade Óssea/efeitos dos fármacos , Distroglicanas/metabolismo , Glicosilação/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular Animal/metabolismo , Fenótipo
18.
Skelet Muscle ; 5: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634117

RESUMO

BACKGROUND: Systemic delivery of anti-sense oligonucleotides to Duchenne muscular dystrophy (DMD) patients to induce de novo dystrophin protein expression in muscle (exon skipping) is a promising therapy. Treatment with Phosphorodiamidate morpholino oligomers (PMO) lead to shorter de novo dystrophin protein in both animal models and DMD boys who otherwise lack dystrophin; however, restoration of dystrophin has been observed to be highly variable. Understanding the factors causing highly variable induction of dystrophin expression in pre-clinical models would likely lead to more effective means of exon skipping in both pre-clinical studies and human clinical trials. METHODS: In the present study, we investigated possible factors that might lead to the variable success of exon skipping using morpholino drugs in the mdx mouse model. We tested whether specific muscle groups or fiber types showed better success than others and also correlated residual PMO concentration in muscle with the amount of de novo dystrophin protein 1 month after a single high-dose morpholino injection (800 mg/kg). We compared the results from six muscle groups using three different methods of dystrophin quantification: immunostaining, immunoblotting, and mass spectrometry assays. RESULTS: The triceps muscle showed the greatest degree of rescue (average 38±28 % by immunostaining). All three dystrophin detection methods were generally concordant for all muscles. We show that dystrophin rescue occurs in a sporadic patchy pattern with high geographic variability across muscle sections. We did not find a correlation between residual morpholino drug in muscle tissue and the degree of dystrophin expression. CONCLUSIONS: While we found some evidence of muscle group enhancement and successful rescue, our data also suggest that other yet-undefined factors may underlie the observed variability in the success of exon skipping. Our study highlights the challenges associated with quantifying dystrophin in clinical trials where a single small muscle biopsy is taken from a DMD patient.

20.
Hum Gene Ther Methods ; 25(3): 187-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24635668

RESUMO

Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV)-mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: (1) Large(myd) (LARGE gene) and (2) FKRP(P448L) (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Large(myd) mice. In addition, LARGE overexpression in the FKRP(P448L) mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Large(myd) mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency.


Assuntos
Dependovirus/genética , Distroglicanas/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicosilação , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , N-Acetilglucosaminiltransferases/genética , Pentosiltransferases , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...